بررسی وجود جواب های دورهای برخی از مدل های عفونی

پایان نامه
چکیده

بیماری های عفونی همواره از مسائل مهم پزشکی می باشند. این نوع بیماری ها مانند ایدز، هپاتیت، سرطان خون و فلج اسپاستیگ، باعث مرگ ومیر انسان های زیادی می شوند، بنابراین بررسی دستگاه های پارامتری عفونی مورد توجه قرار می گیرد. در این پایان نامه دستگاه معادلات دیفرانسیل تاخیری بیماری های ایدز، هپاتیت، سرطان خون و فلج اسپاستیگ را ‏توسط نظریه انشعاب از نقطه نظر رفتار دینامیکی آن ها با تغییر پارامتر مورد تجزیه و تحلیل قرار می دهیم. از آن جا که مدل های عفونی، پارامتری می باشند، پایداری نقاط مشکل ساز (نقاط تعادل) را به ازای افزایش و کاهش تاخیر های زمانی مورد بررسی قرار می دهیم، و به کمک تئوری انشعاب هاف نشان می دهیم که این مدل ها برای برخی از مقادیر تاخیر دارای انشعاب هاف و در نتیجه جواب دوره ای می باشد.

منابع مشابه

تحلیل پایداری و وجود جواب برای برخی از مدل های بیماری های مسری

بررسی پایداری و وجود جواب برخی مدل های بیماری مسری با شبیه سازی عددی که اگر از یک کمتر باشد معادله پایدار و در غیر این صورت ناپایدار است. همچنین اثرات واکسیناسیون برای برطرف کردن بیماری بررسی می شود.

15 صفحه اول

یافتن جواب بهینه مدل انتخاب تکنولوژی با داده های فازی

در این مقاله روشی برای یافتن جواب بهینه مدل انتخاب تکنولوژی با داده های فازی معرفی می شود. مقاله یک روش ساده محاسباتی برای یافتن جواب بهینه مساله برنامه ریزی خطی فازی مدل انتخاب تکنولوژی پیشنهاد می کند که درآن نیاز به حل هیچ LP فازی نیست. این تحقیق از پیچیدگی محاسبات داده های فازی می کاهد و زمانیکه پیچیدگی بیشتری مطرح می شود اهمیت این روش نیز افزایش می یابد.

متن کامل

دورهای تحلیلی روی خمینه های مختلط

سال 1961 مایکل اتیه و هیتزبروخ برای این که کلاس دوری در همولوژی، تحلیلی باشد، شرط توپولوژیک پیدا کردند. برای این که دوری تحلیلی باشد، می بایست شرطی بدیهی برقرار باشد که منجر به حدس هاج خواهد شد. در این مقاله، شرطی از هندسه مختلط که از نظریه هاج تحمیل می شود بررسی خواهیم کرد. بخش اعظم مقاله به ایده های نظریه مانع توپولوژیک اختصاص دارد.

متن کامل

وجود جواب تناوبی معادله دیفرانسیل رسته سوم غیرخطی یک مدل ریاضی برای ترمز خودروهای سنگین

در این مقاله ما شرط لازم و کافی برای وجود جواب تناوبی غیربدیهی معادله دیفرانسیل معمولی مرتبه سوم غیرخطی را مطالعه نموده و با استفاده از قضیه نقطه ثابت شادر ،وجود این جواب را ثابت میکنیم. سپس با استفاده از کامپیوتر جواب تناوبی را در حالات خاص تقریب نموده و آن را در صفحات xt ؛ xx? و x?x?? رسم مینمائیم. مطلب جالب در این مقاله، کاربرد این مسئله در ترمز خودروهای سنگین است، یعنی ما با استفاده از فرمو...

متن کامل

بررسی وجود جواب های چندگانه برای برخی از مسائل مقدار مرزی دیریکله با اثرات ضربه ای

در این رساله ما چندگانگی جواب ها را با استفاده از روش های تغییراتی و نظریه نقطه بحرانی را برای ردهای از معادلات دیفرانسیل ضربه ای مطالعه می کنیم.

15 صفحه اول

بررسی وجود و چندگانگی جواب برخی از دستگا ه های مقدار مرزی بیضوی

در این رساله، ابتدا وجود جواب یک مساله ی نیم خطی با شرط مرزی نیومن و همچنین وجود جواب یک دستگاه نیم خطی تبهگن با شرط مرزی دیریکله را با استفاده از روش های تغییراتی ثابت می نماییم. در ادامه کاربردی از اصل لوشترنیک-اشنیرلمن را برای اثبات وجود دنباله ای از مقادیر ویژه برای مساله ای پی- لاپلاسین با یک شرط مرزی ارایه خواهیم داد و سپس به بررسی وجود جواب دو دستگاه بیضوی شبه خطی می پردازیم. همچنین وجود...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023